

MATHEMATICS STANDARD LEVEL PAPER 2

Thursday 6 May 2010 (morning)

1	hour	30	min	ιιtΔc
- 1	nour	วบ	111111	utes

	C	andi	date	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ -1 & -1 & 4 \\ 2 & 4 & -3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$.

(a)	Write down A^{-1} .	[2 marks]
(b)	Solve $AX = B$.	[3 marks]

2.	[Ma	ximum mark: 6]	
	Con	sider the arithmetic sequence 3, 9, 15,, 1353.	
	(a)	Write down the common difference.	[1 mark]
	(b)	Find the number of terms in the sequence.	[3 marks]
	(c)	Find the sum of the sequence.	[2 marks]

3. [Maximum mark: 7]

(a)

Let $f(x) = x \cos x$, for $0 \le x \le 6$.

Find f'(x).

[3 marks]

		 													 						 				 			 									 							 ,
	-	 	•	•				٠					•		 	٠	٠	•				•		•		٠	•	 	•	•		 ٠	•		 •	•		٠	•	•	 ٠	•		
٠	•	 	•	•	•	•	 •	•	•	 •	•	•	•	•	 	٠	•	•	•	•	 •	•	•	•	 •	•	•	 	٠	•	•	 •	•	•	 •	•	 •	•	•	•	 •	٠	•	
•	-	 	•	٠	•			•				•	•		 	٠	٠	٠	•			٠	•	•	 •	٠	•	 	٠	•	•	 ٠	•		 •	•		•	•	•	 ٠	•		 ,
•		 		•	٠		 •	•		 •	•	•	•		 	•	٠	•	•	•	 •	٠	٠	•	 •	•	•	 	•	•	-	 •	•		 •	•		•	•	•	 •	•		

(b) On the grid below, sketch the graph of y = f'(x).

[4 marks]

[Maximum mark: 6] 4.

The following frequency distribution of marks has mean 4.5.

Mark	1	2	3	4	5	6	7
Frequency	2	4	6	9	x	9	4

(a)	Find the value of x .	[4 marks]
(b)	Write down the standard deviation.	[2 marks]
	••••••••••••••••••	

. [Maximum mark: 7]

5.

The graph of $y = p \cos qx + r$, for $-5 \le x \le 14$, is shown below.

-6-

There is a minimum point at (0, -3) and a maximum point at (4, 7).

- (a) Find the value of
 - (i) p;
 - (ii) q;
 - (iii) r. [6 marks]
- (b) The equation y = k has exactly **two** solutions. Write down the value of k. [1 mark]

.....

.....

6. [*Maximum mark: 7*]

The acceleration, $a \,\mathrm{m}\,\mathrm{s}^{-2}$, of a particle at time t seconds is given by

$$a = \frac{1}{t} + 3\sin 2t$$
, for $t \ge 1$.

− 7 *−*

The particle is at rest when t = 1.

Find the velocity of the particle when t = 5.

											_				_	_				_	_	_	_	_					_	 	 	_	

7.	[Ma	ximum mark: 7]	
	Evai	n likes to play two games of chance, A and B.	
	For	game A, the probability that Evan wins is 0.9. He plays game A seven times.	
	(a)	Find the probability that he wins exactly four games.	[2 marks]
	For	game B, the probability that Evan wins is p . He plays game B seven times.	
	(b)	Write down an expression, in terms of p , for the probability that he wins exactly four games.	[2 marks]
	(c)	Hence, find the values of p such that the probability that he wins exactly four games is 0.15 .	[3 marks]

Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 14]

The diagram below shows a quadrilateral ABCD with obtuse angles ABC and ADC.

 $AB = 5 \text{ cm}, BC = 4 \text{ cm}, CD = 4 \text{ cm}, AD = 4 \text{ cm}, BAC = 30^{\circ}, ABC = x^{\circ}, ADC = y^{\circ}.$

- (a) Use the cosine rule to show that $AC = \sqrt{41 40\cos x}$. [1 mark]
- (b) Use the sine rule in triangle ABC to find another expression for AC. [2 marks]
- (c) (i) Hence, find x, giving your answer to two decimal places.
 - (ii) Find AC. [6 marks]
- (d) (i) Find *y*.
 - (ii) Hence, or otherwise, find the area of triangle ACD. [5 marks]

Do NOT write on this page.

9. [Maximum mark: 16]

Let $f(x) = Ae^{kx} + 3$. Part of the graph of f is shown below.

The y-intercept is at (0, 13).

(a) Show that A = 10.

[2 marks]

(b) Given that f(15) = 3.49 (correct to 3 significant figures), find the value of k.

[3 marks]

- (c) (i) Using your value of k, find f'(x).
 - (ii) Hence, explain why f is a decreasing function.

(iii) Write down the equation of the horizontal asymptote of the graph f.

[5 marks]

Let $g(x) = -x^2 + 12x - 24$.

(d) Find the area enclosed by the graphs of f and g.

[6 marks]

Do **NOT** write on this page.

10. [Maximum mark: 15]

The weights of players in a sports league are normally distributed with a mean of 76.6 kg, (correct to three significant figures). It is known that 80 % of the players have weights between 68 kg and 82 kg. The probability that a player weighs less than 68 kg is 0.05.

(a) Find the probability that a player weighs more than 82 kg.

[2 marks]

- (b) (i) Write down the standardized value, z, for 68 kg.
 - (ii) Hence, find the standard deviation of weights.

[4 marks]

To take part in a tournament, a player's weight must be within 1.5 standard deviations of the mean.

- (c) (i) Find the set of all possible weights of players that take part in the tournament
 - (ii) A player is selected at random. Find the probability that the player takes part in the tournament.

[5 marks]

Of the players in the league, 25 % are women. Of the women, 70 % take part in the tournament.

(d) Given that a player selected at random takes part in the tournament, find the probability that the selected player is a woman.

[4 marks]

